In animal husbandry, feed conversion ratio (FCR) or feed conversion rate is a ratio or rate measuring of the efficiency with which the bodies of livestock convert animal feed into the desired output. For dairy cows, for example, the output is milk, whereas in animals raised for meat (such as beef cows, pigs, chickens, and fish) the output is the flesh, that is, the body mass gained by the animal, represented either in the final mass of the animal or the mass of the dressed output. FCR is the mass of the input divided by the output (thus mass of feed per mass of milk or meat). In some sectors, feed efficiency, which is the output divided by the input (i.e. the inverse of FCR), is used. These concepts are also closely related to efficiency of conversion of ingested foods (ECI).
Video Feed conversion ratio
Background
Feed conversion ratio (FCR) is the ratio of inputs to outputs; it is the inverse of "feed efficiency" which is the ratio of outputs to inputs. FCR is widely used in hog and poultry production, while FE is used more commonly with cattle. Being a ratio the FCR is dimensionless, that is, it is not affected by the units of measurement used to determine the FCR.
FCR a function of the animal's genetics and age, the quality and ingredients of the feed, and the conditions in which the animal is kept, and storage and use of the feed by the farmworkers.
As a rule of thumb, the daily FCR is low for young animals (when relative growth is large) and increases for older animals (when relative growth tends to level out). However FCR is a poor basis to use for selecting animals to improve genetics, as that results in larger animals that costs more to feed; instead Residual Feed Intake (RFI) is used which is independent of size. RFI uses for output the difference between actual intake and predicted intake based on an animal's body weight, weight gain, and composition.
The outputs portion may be calculated based on weight gained, on the whole animal at sale, or on the dressed product; with milk it may be normalized for fat and protein content.
As for the inputs portion, although FCR is commonly calculated using feed dry mass, it is sometimes calculated on an as-fed wet mass basis, (or in the case of grains and oilseeds, sometimes on a wet mass basis at standard moisture content), with feed moisture resulting in higher ratios.
Maps Feed conversion ratio
Conversion ratios for livestock
Animals that have a low FCR are considered efficient users of feed. However, comparisons of FCR among different species may be of little significance unless the feeds involved are of similar quality and suitability.
Beef cattle
As of 2013 in the US, a FCR calculated on live weight gain of 4.5-7.5 was in the normal range with an FCR above 6 being typical. As of 2013 FCRs had not changed much compared to other fields in the prior 30 years, especially compared to poultry which had improved feed efficiency by about 250% since the late 1800s.
Dairy cattle
The dairy industry traditionally didn't use FCR but in response to increasing concentration in the dairy industry and other livestock operations, the EPA updated its regulations in 2003 controlling manure and other waste releases produced by livestock operators. In response the USDA began issuing guidance to dairy farmers about how to control inputs to better minimize manure output and to minimize harmful contents, as well as optimizing milk output.
In the US, the price of milk is based on the protein and fat content, so the FCR is often calculated to take that into account. Using an FCR calculated just on the weight of protein and fat, as of 2011 an FCR of 13 was poor, and an FCR of 8 was very good.
Another method for dealing with pricing based on protein and fat, is using energy-corrected milk (ECM), which adds a factor to normalize assuming certain amounts of fat and protein in a final milk product; that formula is (0.327 x milk mass) + (12.95 x fat mass) + (7.2 x protein mass).
In the dairy industry, feed efficiency (ECM/intake) is often used instead of FCR (intake/ECM); an FE less than 1.3 is considered problematic.
FE based simply on the weight of milk is also used; an FE between 1.30 and 1.70 is normal.
Pigs
As of 2011, pigs used commercially in the UK and Europe had an FCR, calculated using weight gain, of about 1 as piglets and ending about 3 at time of slaughter. As of 2012 in Australia and using dressed weight for the output, a FCR calculated using weight of dressed meat of 4.5 was fair, 4.0 was considered "good", and 3.8, "very good". In the US as of 2012, commercial pigs had FCR calculated using weight gain, of 3.46 for while they weighed between 240 and 250 pounds, 3.65 between 250 and 260 pounds, 3.87 between 260 and 270 lbs, and 4.09 between 280 and 270 lbs.
Because FCR calculated on the basis of weight gained gets worse after pigs mature, as it takes more and more feed to drive growth, countries that have a culture of slaughtering pigs at very high weights, like Japan and Korea, have poor FCRs.
Sheep
Some data for sheep illustrate variations in FCR. A FCR (kg feed dry matter intake per kg live mass gain) for lambs is often in the range of about 4 to 5 on high-concentrate rations, 5 to 6 on some forages of good quality, and more than 6 on feeds of lesser quality. On a diet of straw, which has a low metabolizable energy concentration, FCR of lambs may be as high as 40. Other things being equal, FCR tends to be higher for older lambs (e.g. 8 months) than younger lambs (e.g. 4 months).
Poultry
As of 2011 in the US, broiler chickens has an FCR of 1.6 based on body weight gain, and mature in 39 days. At around the same time the FCR based on weight gain for broilers in Brazil was 1.8.
For hens used in egg production in the US, as of 2011 the FCR was about 2, with each hen laying about 330 eggs per year.
From the early 1960s to 2011 in the US broiler growth rates doubled and their FCRs halved, mostly due to improvements in genetics and rapid dissemination of the improved chickens. The improvement in genetics for growing meat created challenges for farmers who breed the chickens that are raised by the broiler industry, as the genetics that cause fast growth decreased reproductive abilities.
Crickets
Crickets have a low feed conversion ratio of only 1.7.
Fish
The FIFO ratio (or Fish In - Fish Out ratio) is a conversion ratio applied to aquaculture, where the first number is the mass of harvested fish used to feed farmed fish, and the second number is the mass of the resulting farmed fish. FIFO is a way of expressing the contribution from harvested wild fish used in aquafeed compared with the amount of edible farmed fish, as a ratio. Fishmeal and fish oil inclusion rates in aquafeeds have shown a continual decline over time as aquaculture grows and more feed is produced, but with a finite annual supply of fishmeal and fish oil. Calculations have shown that the overall fed aquaculture FIFO declined from 0.63 in 2000 to 0.33 in 2010, and 0.22 in 2015. In 2015, therefore, approximately 4.55kg of farmed fish was produced for every 1 kg of wild fish harvested and used in feed. The fish used in fishmeal and fish oil production are not used for human consumption, but with their use as fishmeal and fish oil in aquafeed they contribute to global food production.
As of 2015 farm raised Atlantic salmon had a commodified feed supply with four main suppliers, and an FCR of around 1. Tilapia is about 1.5, and as of 2013 farmed catfish had a FCR of about 1.
Rabbits
In India, rabbits raised for meat had an FCR of 2.5 to 3.0 on high grain diet and 3.5 to 4.0 on natural forage diet, without animal-feed grain.
See also
- Entomophagy
References
Source of article : Wikipedia